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ABSTRACT 

The classical transposition theorems of Motzkin, Gordan, Stiemke and 
others are extended to complex linear inequalities. 

Introduction. Consider  the system 

(1) A x  = O, x e S  

where A ~ C mxn and S is a polyhedral  cone in C n (1). The existence o f  nontr ivial  

solutions (2) o f  systems like (1) is studied here in a sequence of  theorems of the 

alternative, each listing two systems such as: 

(I) Ax = O, x nont r iv ia l  vector  in S(2) 

(II)  Any nont r iv ia l  vector  in S*(2). 

exactly one o f  which is consistent.  These theorems have as corol lar ies  the trans- 

position theorems (a) and theorems of  the alternative fo r  l inear  inequalit ies,  given 

in the references,  in par t icular  the classical theorems o f  Motzk in  [13] [14], 

G o r d a n  [6] and  St iemke [17]. 

O. Notations and preliminaries. 

C*[R ~] the n-dimensional complex [real] vector space 

CmXn[R "xn] the mxn complex [real] matrices 

R~+ = {x~Rn:x~ ~ 0 (i = 1 , . . . ,n )}  the nonnegative orthant in R ~. 

For any A e C"~'n: 

A c the conjugate, A r t h e  transpose, A rt = A cr 
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(1) See notations in §0. 
(2) Nontriviat here means nonzero or even that a subvector lies in the (relative) interior 

of a given cone. 
(3) A term explained by the fact that in the real case the system (II) uses the transposed 

matrix A r. 
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For any x,  y e R n: 

x > y denotes x~ > y~ (i -- 1,. . . ,n),  x ~ y denotes x _~ y and x ~ y 

x > y denotes x i > Yt (i = 1 , . . . , n )  

For any x ,  y e C ~ :  ( x , y )  = y n x  

A nonempty set S in C" is a 

(i) convex cone i f S + S c S a n d i f ~ - > _ 0  ~ ~ S c S  

(ii) pointed convex cone if  (i) and if  S n ( - S )  = {0) 

(iii) polyhedral  cone if  S = BRk+ for some B e  C ~k 

For any nonempty set S in C ~ let 

S* = {y~C*:  x ~ S  ~ Re(y,x) > 0) the polar of S, e.g. [3] 

intS* = {ye C~: 0 ~ x e S  :~ Re(y,x) > 0} the interior of S*. 

S* is a closed convex cone. 

Since S* coincides with the polar of the smallest closed convex cone containing 

S,  e.g. [3], it suffices to study polars of closed convex cones. Thus for example 

sets whose polars have interior points are characterized in: 

LEMMA 0. Let  S be a closed convex cone in C n . Then  intS* ~ ~ i f  and  only  

i f  S is pointed.  

Proof. I f :  e.g. [7] Theorem 2.1. 

Only  if: Suppose S is not pointed, and thus contains a nonzero vector x together 

with - x .  Then for any ye in tS* ,  Re(y,x) > 0  and Re(y, - x )  > 0, a contradic- 

tion. Therefore intS* = ~ .  [] 
Since S = S** if  and only if  S is a closed convex cone, e.g. [3] Theorem 1.5, 

it follows that for a closed convex cone S, int S defined by int S = {x ~ S: 0 

y e S* =~ Re(y,x) > 0}, is nonempty if  and only if  S* is pointed. 

Another result needed below is the following solvability theorem (3.5 of [3]) 

for polyhedral systems: 

TrmOREM 0. Let  A ~ C rex", b ~ C m and  let S be a polyhedral  cone in C".  Then  

A x  = b ,  x ~ S  

is consistent if, and  only  if, 

ABy e S* ~ Re(b, y) > 0.  
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1. Results. All the results that follow are formulated as theorems of the 

alternative, each listing two systems denoted by (I) and (II), exactly one of 

which has solutions. 

The main result is: 

THEOREM 1. Let 

Ate C "~"', (i = 1,...,4) A t # 0, A2 # 0, T a polyhedral cone in C m 

S t polyhedral cones in C *t, (i = 1,2,3), $1 and S~ pointed. 

Then exactly one of the following two systems is consistent: 

(I) 
4 f O # x l e S l ,  xzeS2 ) 

A~xi ~ T, ~or S' x3 e Sa 
t = l  ( Xl ~ S~ ,  x2 ~ int S2 

(II) y ~ - T*, Afy  ~ int S*, 0 # Afy  e S~, At~y ~ S~, A b  = 0 

Proof. (1) and (II) cannot have both solutions, for then 

( a'x''y) ( " ) 0 _>_ Re since ~ Aixt ~ T, y ~ - T* 
f-=l 

= Z Re(x,,a y) 
/=1 

> 0, by (I), (II) and the definitions of int ST and of int S2. 

Suppose now that (I) is inconsistent. Then 

(2) li 
t A2 A3 A, 

0 0 0 

I 0 0 

0 I 0 

Xl 

X2 

X3 

X4 

T x $1 x $2 x Sz =~ xl =0 and x2 ~ int S2, 

The first conclusion in (2) is rewritten as follows: 

For any z ~ C n: 

(3) 
-il -A2  -A3  -A4  

0 0 0 

I 0 0 

0 I 0 

Ixll 
x2 ~ ( - T )  x $1 

?1 
X4 

xs2xs3 Ret(i 1 Ix1]) 
x2 >0  

X4 
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By Theorem 0 this is equivalent to: 

The system 

(4) 

- A ~  I 0 0 

- A z  n 0 I 0 

- A ~  0 0 I 

- A ~  0 0 0 

r l ] 
Y z I Y 

1 
u = i o  I u 1 

lJ v 0 v 

w .  0 w 

( - T*) x S~ x S 2. x Ss* 

is consistent for any z z C". For a choice of z with - z ~ i n t S * ,  the system (4) 

gives: 

(5) y ~ - T * ,  Anly = - - z + u ~ i n t S *  (since - z ~ i n t S * , u ~ S * )  

Argy = o~S*, Atgy = w~S'~, Any = 0 

The consistency of (5) proves that of (II), if the existence of v # 0 in (5) can be 

shown. Suppose that no such v exists. Then 

(6) 
A? 

An3 

An 

y ~ ( -  T*) x Sx* x S~ x S* x {0} =~ A~y = 0 

Re(A2z, y) __> 0 for any z E C". 

(6) is equivalent by Theorem 0 to the consistency of 

(7) x o + 
4 

]~ Aix i = A 2 z , x o ~ - T ,  x I ~ S x ,  x 2 e S 2 , x a ~ S a , x 4 6 C " f o r a n y  z~C".  
i=1 

If z is chosen so that - z  e intS2 then (7) gives 

(8) 
A l x  1 + A2(x 2 - z) + Aax a q- A4x 4 = - x o e  T 

xx e S l ,  x 2 -  z~intS2 (since - z ~ i n t S 2 ,  •2ES2),x3ES3 

which contradicts the second conclusion in (2). This completes the proof. [] 

Related results are: 
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THEOREM 2. Let T, As, Si (i = 1,3,4) be as in Theorem 1. Then exactly 

one of the following two systems is consistent. 

(I) AIXl + Aaxa + A4x4 ~ T, 0 ~ x I ~ S l ,  X 3 ~ S 3 

(II) y ~ - T * ,  A~yeintS*,  ANy¢S~, A~y = 0  

Proof. Delete A2, $2, x2 from the proof of Theorem 1, and follow that proof 

until (5) which completes the present proof. [] 

THEOREM 3. Let T, A i, S~ (i = 2,3,4) be as in Theorem 1. Then exactly 

one of the following two systems is consistent. 

(I) A2x2+Aaxa+A4x4ET,  x2EintS2, xa~S  a 

(II) y ~ - T * ,  O ~  A~yeS*,  AHay~S* A ~ y = O  

Proof. Similarly delete At, St,  xt from the proof of Theorem 1, and adapt 
that proof. [] 

Some consequences of these theorems are: 

COROLLARY 1. (Slater [16]) 

Let 

Ai~R "~"~, (i = 1,...,4), A t ~ 0, A 2 ~ 0 

Then exactly one of the following two systems is consistent. 

,, x, ~_, x 2 > O  
(I) ~ A , x , = 0 ,  {or }, x a ~ 0  

~=t xt_>O, xz>O 

(II) A~y>O, AV2y>=O, A[>=O, A~y=O 

Proof, Take everything in Theorem 1 to be real with T = {0} and S~ = R+,"' 

(i = 1, . . . ,4) .  []  

COROLLARY 2. (Motzkin [13], [19]) 

Let 

A i~R r~"', (i = 1,3,4), Al # 0. 

Then exactly one of the following two systems is consistent. 

(I) Atx  I + Aax a + A4x 4 = O, xt >= O, x a ~_ 0 

A,r > O, AZay>=O, A~y=O 
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Proof. Similarly follows from Theorem 2. []  

COROLLARY 3. (Tucker [18], [19]) 
Let 

A s E R "~"' (i = 2, 3, 4), A 2 ~ 0. 

Then exactly one of the following two systems is consistent. 

(I) A2x 2 + AaX a q- Agx 4 = O, x 2 > 0, x 3 ~ 0 

Ale>0, A y>0, ale=0 
Proof. Similarly follows from Theorem 3. [ ]  

Taking A 3 = A 4 = 0 in Corollaries 2 and 3 gives the transposition theorems 

of Gordan [6] and Stiemke [17] respectively. 

These transposition theorems were generalized to the complex case by Mond 

and Hanson [11], [12]. The following notations and observations are needed 

to cite one of their results: 

For a E R ~ :  ~ =< n/2 denotes a~ __< ir/2 (i = 1, . . . ,n)  

For aER~.,  z e C  n: 

[argz] =< ~ denotes largz,] =< ~, (i = 1, . . . ,n) 

For ct e R~., ~ =< 7r/2, S = {z :[ arg z [ __< ~} is a polyhedral cone and its polar 

is S* = (z :[ arg z I ~ ~[2 - ~}, e.g. [3], example 1.2(e). 

COROLLARY 4. (Mond and Hanson [11]) 
Let 

7g 

Af~C ~n' (i = 1,3,4), A1 ~ 0 ,  ct~R~., ~ _~ 2. 

Then exactly one of the following two systems is consistent. 

(I) A t x l + A 3 x a + A 4 x 4 = O ,  I m x , = 0 ,  Rex1 >__0, [argxa[=<ct 

(n) ReA 'y>0, ]argA3"y[ aZy=O 
Proof. Follows from Theorem 2 with 

T = {0}, S 1 = R~? (in C"'),  $3 = {z:largz I _-__ ~}. []  

The other complex transposition theorems of Mond and Hanson [12] similarly 

follow from the above theorems. 

2. Remarks. (i) The following (real) example shows that Theorem 2cannot 

be extended to general (non polyhedral) closed convex cones. 

Let 
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m = 3  

T = all vectors in R 3 forming an angle < 45 ° with 

1 

0 

1 

n 1 --- 1, S 1 = 

0 

1 , 

0 

S l = R+ (the nonnegative reals) 

135 

n a = 3, A 3 = Ii °°] 1 0 , 

0 1 

$3 = all vectors in R 3 forming an angle 

1 

45 ° with 0 

1 

Then neither (I) nor (II) of Theorem 2 are consistent. 

(ii) The solvability Theorem 0 can easily be shown to follow from Theorem 2. 

Thus Theorems 0, 1, 2 and 3 are equivalent. See also I1] where the equivalence 

of Corollaries 2 and 3 is proved. 

(iii) The above theorems of the alternative and transposition theorems are 

sometimes more convenient in applications than the (logically equivalent) solva- 

bility theorems such as [5], [4] or Theorem 0 above. For applications of trans- 

position theorems see for example [10], 1-12], [14], [15] and [19]. 
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